
1

Multi-view Tensor Graph Neural Networks
Through Reinforced Aggregation

Xusheng Zhao, Qiong Dai, Jia Wu, Senior Member, IEEE Hao Peng, Member, IEEE Mingsheng Liu,
Xu Bai, Jianlong Tan, Senzhang Wang, Philip S. Yu, Fellow, IEEE

Abstract—Graph Neural Networks (GNNs) have yielded fruitful results in learning multi-view graph data. However, it is challenging for
existing GNNs to capture the potential correlation information (PCI) among the graph structure features of multiple views. It is also
challenging to adaptively identify valuable neighbors for node feature fusion in different views. To this end, we propose a novel
Reinforced Tensor Graph Neural Network (RTGNN) framework to more effectively perform multi-view graph representation learning
through reinforcing inter- and intra-graph aggregation. Specifically, RTGNN first uses tensor decomposition to extract the graph
structure features (GSFs) of each view in the common feature space. These GSFs contain the PCI of multiple views and alleviate
fusion conflicts that may be caused by differences between view feature spaces in cross-view feature fusion. Since fusing the features
of all neighbor nodes may harm the features of the center node, we filter the irrelevant neighbors to improve the performance of
intra-graph aggregation in each view. Concretely, a reinforcement learning (RL)-guided scheme is developed to automatically calculate
the optimal filtering threshold for each view, avoiding tedious manual updates and infeasible back propagation updates. Experimental
results and analysis on five datasets show that RTGNN surpasses the best multi-view graph representation baselines and achieves the
maximum 14.26% performance improvement in terms of F1. The code link is https://github.com/RingBDStack/RTGNN.

Index Terms—Multi-view, graph neural network, tensor decomposition, reinforcement learning.

F

1 INTRODUCTION

Large amounts of data, in reality, can naturally be stored
as graphs, consisting of nodes and edges. If an instance
of graph-structured data contains the same nodes but dis-
crepant structures in different views/modalities, it can be
defined as a multi-view graph. For example, we can convert
a patient’s brain into multiple brain graphs that share the
same nodes but different edges in different medical imaging
views, where nodes represent brain regions and edges rep-
resent relations between the pairs of regions [1]. Then, we
refer to the set of brain graphs of the patient as a multi-view
graph. As a hot topic in the research of multi-view graphs,
multi-view graph representation learning/embedding has
attracted considerable attention in many applications, such
as traffic prediction [2], clinical medicine [3], and so on. Most
existing works in multi-view graph representation learning
aim to combine information from multiple distinct views
and embed each instance into a high-quality representation
with low dimensionality for downstream machine learning

• Xusheng Zhao, Qiong Dai, Xu Bai, and Jianlong Tan are with the Institute
of Information Engineering, Chinese Academy of Sciences, and the School
of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China. E-mail: {zhaoxusheng, daiqiong, baixu, tanjianlong}@iie.ac.cn.

• Jia Wu is with the Department of Computing, Macquarie University,
Sydney, Australia. E-mail: jia.wu@mq.edu.au.

• Hao Peng is with the School of Cyber Science and Technology, Beihang
University, Beijing, China. E-mail: penghao@buaa.edu.cn.

• Mingsheng Liu is with the Shijiazhuang Institute of Railway Technology,
Shijiazhuang, China. E-mail: liums601001@sina.com.

• Senzhang Wang is with the School of Computer Science and Engineering,
Central South University, Changsha, China. E-mail: szwang@csu.edu.cn.

• Philip S. Yu is with the Department of Computer Science, University of
Illinois at Chicago, IL, USA. E-mail: psyu@uic.edu.

Manuscript received July, major revised November, minor revised December
2021, accepted January 2022. (Corresponding author: Hao Peng)

or data mining tasks, such as classification [3], [4], cluster-
ing [5], [6], [7], and so on.

Existing multi-view graph representation learning works
can be generally categorized into two types from the per-
spective of model architecture depth. As stated in work [1],
shallow models, such as models based on tensor decom-
position [8], [5] and random walk [9], [10], have limited
capability in learning feature representations of multi-view
graphs with complex structures. In contrast, deep models,
such as [1], [3], [11], [4] often utilize Deep Neural Networks
(DNNs) to learn highly non-linear and structure-preserving
representations for multi-view graphs. Among them, Graph
Neural Networks (GNNs)-based models are prevalent and
compelling because they take advantage of the represen-
tation capability of deep learning and migrate traditional
convolution operations from Euclidean space to topological
graphs with irregular domains [12], [13], [14].

Since most original GNNs, such as Graph Convolutional
Network (GCN) [12], GraphSAGE [15] and Graph Attention
Network (GAT) [16] are designed to deal with single-view
graphs, it is inconvenient to apply them to multi-view graph
scenes. Specifically, given a multi-view graph, the straight-
forward solution is to consider only a single or combined
view and ignore the other views [11], [17], [18], which may
lose some potential correlation information (PCI) among
the graph structure features of multiple views or the graph
structure features (GSFs) of each view. Some works in [19],
[6], [4], [3], [20] extended the original GNN to a multi-
channel version to process each graph separately and then
aggregate the graph features from all the views. Although
they can capture the GSFs of each view, they always ignore
the PCI of multiple views. Recently, [21] proposed a GNN-
based model with tensor networks to capture the spatial and

https://github.com/RingBDStack/RTGNN

2

(a) Day view graph (b) Month view graph (c) Tensor graph

Fig. 1: A toy example of multi-view graphs with three views
in an urban traffic scene.

temporal information of dynamic spatiotemporal graphs. It
is customized for mining the temporal information across
multiple graphs in a single view and cannot be directly
applied to capture PCI in the multi-view graph. In addition,
previous works in [22], [23], [24], [25], [26] have pointed out
and verified that usually, not all neighbors are valuable for
intra-graph aggregation of GNNs, such as GCN and GAT.
Some aggregated neighbor nodes may provide interference
information that harms the representation learning of the
center node. And some works in [25], [27], [28], [29] have al-
leviated this problem by filtering these irrelevant neighbors.
However, they either ignore the influence of edge weights
on the importance of neighbor nodes or manually specify
the number of neighbors that need to be retained (a.k.a. the
filtering threshold).

To extend GNNs to the multi-view graph, we need
to address the following two major challenges. First, it is
difficult for original GNNs to effectively capture PCI due to
the non-negligible heterogeneity between different views.
For example, Fig. 1 shows a multi-view graph whose nodes
and edges represent stations and traffic flows among them,
respectively. It contains the traffic graph in the current day
view (i.e., Fig. 1(a)) and the traffic graph in the past month
view (i.e., Fig. 1(b)). The two graphs in different views share
the same set of nodes but with discrepant structure features
in sparsity and edge weight distribution. It is naturally hard
to mine the PCI encoded by the two views with different
view feature spaces and may easily cause fusion conflicts in
cross-view feature fusion. The second challenge is that it is
tricky to adaptively identify valuable neighbors for intra-
graph aggregation in each view. Applying the rich edge
information in multi-view graph data to assist neighbor
importance ranking has rarely been studied. In addition,
in a multi-view graph, different views may correspond to
different optimal neighbor filtering thresholds. Since treat-
ing the thresholds as hyperparameters lacks generalization
capability, we usually need to manually update them during
the experiment, which is laborious and time-consuming.
This motivates us to investigate: can we design a scheme that
utilizes the edge information to great effect to assist in ranking the
importance of neighbors and automatically find the best filtering
thresholds for different views?

To tackle the above two challenges, a novel Reinforced
Tensor Graph Neural Network framework, i.e., RTGNN, is
proposed for multi-view graph representation learning in
this work. RTGNN contains four major learning steps: 1)
PCI Extraction. Inspired by the fact that tensor decompo-
sition can acknowledge the underlying correlations among
different modes of a tensor and explore the factor features

in each mode [30], [8], [5], RTGNN utilizes a bridge module
based on tensor decomposition algorithms to deal with the
first challenge. Similar to Fig. 1(c), the bridge module first
stacks the graphs of different views as a tensor [5], [31],
[32] and then introduces the Higher-order Singular Value
Decomposition (HOSVD) [33] to extract the GSFs containing
PCI in the common feature space. It is worth noting that this
module is not limited by the number of views and reduces
the risk of fusion conflicts that may be caused by incon-
sistent feature spaces when performing cross-view graph
feature fusion (i.e., inter-graph aggregation). 2) Neighbor
Filtration. We propose an RL-guided module that includes
a novel neighbor importance measure and a filtering thresh-
old calculator to solve the second challenge. Concretely, the
measure employs the edge weights and edge distances in
the graph data to rank the importance of neighbors. Since
the filtering thresholds are not directly involved in the
model training process, using back propagation to update
them is infeasible. Moreover, it is also infeasible to evaluate
the thresholds within an epoch. Therefore, reinforcement
learning (RL) [34] is applied in the threshold calculator to
automatically search for the best filtering threshold for each
view. 3) Intra-graph Aggregation. After obtaining the GSFs
of each view and the most valuable neighbors that have
undergone the above reinforcement operations, we employ
a multi-view GNN to aggregate the features of neighbors in
a view-parallel manner to further improve GSFs. Compared
with the tensor-based methods, the multi-view GNN better
explores the hierarchical patterns of the graphs of different
views. 4) Inter-graph Aggregation. Following the principle
of node feature aggregation within a graph, we employ a
node-aware manner to fully fuse graph features from dif-
ferent views. At the last layer of our RTGNN, we vectorize
the output in order to get the low-dimensional multi-view
graph representations.

Our three key contributions are generalized as below:
• We propose a multi-view graph representation learn-

ing framework RTGNN with two novel modules. On the
one hand, the bridge module takes advantage of tensor
decomposition in capturing the PCI encoded by multiple
views. On the other hand, the RL-guided module guides
the intra-graph aggregation of the multi-view GNN, thereby
further improving the GSF mining of each view.
• To the best of our knowledge, this is the first work

to introduce HOSVD into the GNN for multi-view graph
representation learning. We are also the first to introduce
edge information for neighbor filtering in the intra-graph
aggregation of the multi-view GNN.
• We conduct plentiful experiments on five real multi-

view graph datasets. The corresponding results and anal-
ysis indicate that the proposed RTGNN is superior to the
best baselines. Besides, RTGNN can not only process nat-
ural multi-view graphs (e.g., multi-view brain graphs), but
also assist in internal multi-view analysis of heterogeneous
graph network datasets (e.g., DBLP).

We format the paper as follows: Sec. 2 describes the
preliminary knowledge. Sec. 3 presents the specific technical
details of our RTGNN. Sec. 4 gives the relevant deployments
and results of the experiments. Sec. 5 introduces related
work. Sec. 6 concludes the work of this paper.

3

TABLE 1: Forms and interpretations of necessary notations.

Forms Interpretations/Definitions
G;Gtrain The multi-view graphs; The training set in G
A;F The weighted adjacency tensor; The feature tensor
A+;Z The trainable adjacency tensor; The transformation tensor
G;N ;E The graph; The node set; The edge set

X;Y The node label matrix; The multi-view graph label matrix
A;F The weighted adjacency matrix; The feature matrix
Â; F̂ The normalized version of A; The enhanced version of F

E The final feature matrix of G
U;V These notations indicate tensor factor matrices
I;Z The square matrix; The feature transformation matrix
M The total number of multi-view graphs

V ; |N | The total number of views; The nodes’ number in G
D The feature dimension of F/E
L The total number of layers of the multi-view GNN
P The total number of epochs

T ;S The filtering threshold; The step size of RL action
n The node element belonging to N

i; j; k; k′; l; l∗; p These notations represent index variables
AGGintra(·) The intra-graph aggregation function
AGGinter(·) The inter-graph aggregation function∥∥·∥∥

F
;
∥∥·∥∥

2
The F-norm of the matrix; The 2-norm of the matrix

TRAN(·) The transpose operation of the matrix/tensor
NORM(·) The normalization operation of the matrix
FNN(·) The fully connected neural network

IMP (k, k′) The importance of node nk′ to node nk

DIST (k, k′) The distance between nk and its neighbor nk′

RANK(k, k′) The ranking of the importance of node nk′ to node nk

AV G The average neighbor importance
REW ;TER The RL reward; The terminal condition
σ(·); min(·) The activation function; The mathematical min function

⊗;× The combination operation; The mode product operation
Ledge;LGNN The measure loss; The GNN loss

Lall The overall loss of RTGNN
Θ;µ The model parameter set; The regularization coefficient

2 PRELIMINARIES

First, we define the multi-view graphs and the multi-view
graph representation learning. Next, we give the intra-
and inter-graph feature aggregation process of the multi-
view GNN. The forms and interpretations of all necessary
notations throughout our work are stated in Table 1.

Definition 1. Multi-view Graphs. We denote a graph as
G =

{
N,E,X,A,F

}
, where N =

{
nk
}∣∣|N |

k=1
is the node

set, E ⊆ N × N is the edge set, X(k) is the label of the
k-th node nk. Let A ∈ R|N |×|N | represents the weighted
adjacency matrix of G, so that A(k, k′) encodes the relation
between nk and nk′ if there is an edge, and 0 otherwise. Let
F ∈ R|N |×D be the feature matrix of G, where the k-th row
of F, i.e., F(k) is the feature vector of nk with dimension D.
Hence, a V -view graph is denoted as a set

{
Gj

}∣∣V
j=1

, where
each graph is extracted from a specific view, and all graphs
share the same set of nodes N but different sets of edges,
i.e., inconsistent E and A. The dataset contains M multi-
view graphs is G =

{
Gi
}∣∣M

i=1
, where Gi =

{
Gi,j

}∣∣V
j=1

is the
i-th multi-view graph associated with a class label Y(i), and
Gi,j denotes the graph in the j-th view of Gi.

Definition 2. Multi-view Graph Representation Learn-
ing. We study multi-view graph representation learning
in this work, which can be defined as follows: given the
multi-view graphs G =

{
Gi
}∣∣M

i=1
, we aim to embed them

into a low-dimensional and high-quality feature matrix
E ∈ RM×D(L)

, which allows multi-view graphs with differ-
ent labels to be easily separated. E(i) indicates the feature
representation/vector of Gi.

Definition 3. Multi-view GNN. This is a GNN frame-
work designed for learning multi-view graph representa-
tions. Given G, we can denote its accompanying weighted

adjacency tensor and feature tensor as A ∈ RM×V×|N |×|N |

and F ∈ RM×V×|N |×D , respectively. Therefore, A(i) and
F(i) are the weighted adjacency tensor and feature tensor of
the i-th multi-view graph Gi. In addition, we stipulate that
the adjacency matrix A(i, j) and feature matrix F(i, j) of
the graph Gi,j are equivalent to Ai,j and Bi,j , respectively.
For instance, the feature aggregation process of the multi-
view GNN at the l-th layer for the i-th multi-view graph Gi
can generally be expressed as follows:

F
(l)
i,1(k) = σ

(
AGG

(l)
inter

({
F

(l∗)
i,j (k)

}∣∣∣V
j=1

))
,

F
(l∗)
i,j (k) = σ

(
AGG

(l)
intra,j

({
F

(l−1)
i,j (k′) : Ai,j(k, k′) > 0

}))
,

(1)

where F
(l−1)
i,j (k′) is the representation of the k′-th node

nk′ at the (l − 1)-th layer, Ai,j is the weighted adjacency
matrix in the j-th view and remains unchanged at all layers,
and F(l∗) comprises the transformed feature representations
between the l- and (l − 1)-th layer. AGG(l)

intra,j is the intra-
graph aggregation function (e.g., convolution and attention)
at the l-th layer, whose subscript j means using models with
the same architecture but different parameters to handle
each divergent view. AGG(l)

inter is the inter-graph function
(e.g., concatenation and mean) used to fuse graph features
from different views and one for each layer.

3 METHODOLOGY

Fig. 2 illustrates the proposed learning framework RTGNN,
which contains the bridge module, RL-guided module, and
feature aggregation operations. Next, we will introduce each
component of RTGNN in detail.

3.1 Bridge Module for PCI Extraction
Although tensor analysis has shown excellent performance
in multi-view graph mining [32], [31], few efforts combine
tensor decomposition algorithms with GNNs to facilitate
multi-view graph representation learning. Inspired by ten-
sor decomposition’s success in projecting the initial tensor
into a common space that encodes the potential correlations
among different modes [5], [8], we propose a bridge module
based on tensor decomposition, which aims to enhance the
initial GSFs and alleviate the fusion conflicts during the
inter-graph aggregation of the multi-view GNN. Different
from the existing feature space alignment techniques of
different views applied to GNNs [35], the bridge mod-
ule does not roughly use linear transformation to align
multiple feature spaces but finds a new common space
that retains the initial features of each view. Moreover, the
GSFs generated by this module also contain the PCI of
multiple views, which is tricky to achieve with other GNN-
based methods. Considering that the core tensor produced
by Tucker decomposition (i.e., HOSVD [33]) can capture
further correlation information while reflecting most of the
properties of the original tensor (which is lacking in other
algorithms such as CANDECOMP/PARAFAC (CP) decom-
position [36]), we apply Tucker decomposition to complete
the proposed bridge module.

First, we define each multi-view graph Gi in the dataset
G =

{
Gi
}∣∣M

i=1
as an instance. Then we convert all the ac-

companying feature matrices of G into a feature tensor com-
prising four modes: instances, views, nodes and features.

4

Graph in view1

1. Bridge Module for PCI Extraction

Convert the multi-view graph with three

views to a tensor graph

Perform HOSVD on the tensor graph to

extract the GSFs containing PCI in the

common feature space

Trainable

weight1

Perform node-aware

inter-graph aggregation

Perform parameter

optimization

Graph in view2

Graph in view3

A multi-view graph

 Rank the

importance scores

of neighbors

GSFs1+PCI

Perform intra-

aggregation in different

graphs in parallel

3.1 Intra- and Inter-aggregation

Trainable

weight2

M
e
a
s
u
re

 L
o
s
s

G
N

N
 L

o
s
s

A
L
L
 L

o
s
s

GSFs+PCI

The tensor graph

1 2

3

4

5

6

1

2

3

4
6

5

2
.2

 F
ilte

rin
g
 T

h
re

s
h
o
ld

 C
a
lc

u
la

to
r

2.1 Neighbor Importance Measure

Actions &

Rewards

Filter out the

most valuable

neighbors

Edge &

Ranking

information

……

Threshold1=0.7

Threshold3=0.5

…… ……

GSFs3+PCI

3
.2

 V
e
c
to

riz
a
tio

n

Fig. 2: Overview framework of our RTGNN. Given a multi-view graph with three views, the bridge module (Sec. 3.1)
first use HOSVD to capture the PCI of multiple views in the common feature space. Next, the RL-guided module (Sec. 3.2)
combines the neighbor importance measure and RL to automatically select the most valuable neighbors. At the aggregation
stage, we perform parallel intra-graph aggregation (Sec. 3.3.1) on the three graphs and then utilize a node-aware manner
to complete the inter-graph aggregation (Sec. 3.3.2). The optimization steps are presented in Sec. 3.4.

The feature tensor is denoted as F ∈ RM×V×|N |×D, where
F(:, j, :, :) ∈ RM×|N |×D is its j-th slice on the second mode.
The HOSVD process of F is defined as follows:

min
C,U1,U2,U3,U4

∥∥F − C ×1 U1 ×2 U2 ×3 U3 ×4 U4

∥∥2
F
,

s.t. TRAN(Ui)Ui = I, i ∈
{

1, 2, 3, 4
}
,

(2)

where×1,×2,×3 and×4 indicate mode product operations.
U1,U2,U3 and U4 are the factor matrices (i.e., the principal
components) in each mode of F . C is the core tensor whose
entries reveal the level of interaction between the diverse
modes. TRAN = TRAN1,2 represents the transpose oper-
ation of the matrix, and I represents a square matrix. We
further derive the minimization formula for building the
view-dependent graph features as follows:

min
F̂

M∑
i=1

V∑
j=1

∥∥Fi,j ×1 TRAN(U)×2 TRAN(V)− F̂i,j

∥∥2
F
, (3)

where U = U3 and V = U4 are the last two orthogonal fac-
tor matrices of HOSVD on F . More precisely, U and V are
used as functional matrices to project graph representations
to a common feature space, reducing the heterogeneity gap
between different views. F̂i,j is the enhanced reliable fea-
ture matrix corresponding to Fi,j , which involves potential
correlation information of multiple views. To avoid notation
confusion, we use F (0) ∈ RM×V×|N |×D(0)

instead of F̂ (0) in
the following content to represent the input feature tensor
of the multi-view GNN.

3.2 RL-guided Module for Neighbor Filtration
In this part, we propose a novel measure that considers edge
information to calculate the neighbor node importance and
an RL-guided scheme to automatically obtain the optimal
filtering threshold for each view. After eliminating the in-
terference of irrelevant neighbors on each center node in
each view, RTGNN improves the intra-graph aggregation
performance of the multi-view GNN.

3.2.1 Neighbor importance Measure
Previous works in [25], [27] have verified that same-label
neighbors are valuable while different-label ones are gener-
ally of little value in the feature aggregation of the center
node of the GNN. For example, in the graph-based fraud
detection task [27], since fraudster nodes usually interact
with normal nodes to achieve behavioral camouflage, aggre-
gating all neighbor features may lead to indistinguishable
fraudster representations. Although some works in [22],
[37] have proposed unsupervised measures (e.g., cosine
similarity) to filter neighbors, it is still tricky to distinguish
between fraudsters with camouflaged features and normal
users. Hence, we need a neighbor importance measure using
supervised signals from labels. Considering that the multi-
view graphs contain rich edge information, a new measure,
which utilizes edge weights and node labels is developed to
distinguish each node’s valuable neighbors.

Inspired by [25], in which a perceptron is set to predict
annotations, we utilize a Fully Connected Neural Network
(FNN) with a single layer as the node label predictor and the
2-norm

∥∥·∥∥
2

to calculate the node similarity (i.e., Euclidean
distance/edge distance) between the center node and each
of its neighbors. Then we combine edge weights and dis-
tance information to infer the importance of neighbors.
Given the graph Gi,j in the j-th view of the i-th instance,
the importance of the neighbor node nk′ to the center node
nk at the l-th layer is calculated as follows:

IMP
(l)
j (k, k′) =

∣∣Ai,j(k, k′)
∣∣⊗ (1−DIST (l)

j (k, k′)
)
,

DIST
(l)
j (k, k′) = NORM

∥∥∥∥∥∥σ
(
FNN

(l)
j

(
F

(l)
i,j(k)

))
−

σ
(
FNN

(l)
j

(
F

(l)
i,j(k′)

)) ∥∥∥∥∥∥
2

 ,
(4)

where
∣∣Ai,j(k, k

′)
∣∣ is the edge weight of nk and nk′ , and the

outputs of IMP and DIST are both non-negative values.
⊗ is a combination operation, and we use multiplication in
this work. To optimize the above label predictors (i.e., FNN

5

functions) and the multi-view GNN together while avoiding
interference to the training of GNN, we add an independent
calculation path to update the FNN parameters. We denote
the training set in the multi-view graphs G by Gtrain, then
the cross entropy loss of the l-th layer’s FNN functions can
be written as follows:

L(l)edge = −
∑
Gtrain

V∑
j=1

|N|∑
k=1

X(k) log
(
σ
(
FNN

(l)
j

(
F

(l)
i,j(k)

)))
. (5)

During training, the measure is optimized by supervised
signals from node labels. It guarantees fast convergence
within the first few training epochs and helps improve the
accuracy of importance calculations.

3.2.2 Filtering Threshold Calculator
After getting the importance scores of all neighbor nodes in
each view, we rank them first and then find the most valu-
able neighbors according to the filtering thresholds. With
the following motivations, we introduce a filtering threshold
calculator via reinforcement learning to assist the neighbor
filtering process. First, when processing a single-view graph,
we can define a hyperparameter about the filtering thresh-
old and keep tuning to locate the best value. However, in a
multi-view graph, different views often correspond to dif-
ferent optimal neighbor filtering thresholds. It is laborious
and inefficient to find the optimal filtering thresholds for
different views simultaneously through manual adjustment,
especially when the number of views is enormous. Second,
since the filtering thresholds do not directly participate
in the model training process, it is infeasible to use back
propagation from the training loss of the multi-view GNN
to update them. Finally, the filtering threshold of each view
should be dynamically adjusted within the interval of two
adjacent epochs to find the optimal value.

Taking the k-th node nk as an example, we first collect
the set containing the importance scores of its neighbor
nodes

{
IMP

(l)
j (k, k′) : Ai,j(k, k

′) > 0
}

and the l-th layer’s

filtering threshold T (l)
j ∈

[
0, 1
]

in the j-th view, where 0 and
1 indicate that the neighbors are all dropped or kept, respec-
tively. Then we rank the neighbors of node nk in order of im-
portance from large to small and treat the top T (l)

j percent of
neighbors as the optimal aggregation objects. Concretely, we
define the problem of finding optimal thresholds as a Two-
Armed Bandit

{{
act1, act2

}
, REW,TER

}
[34], where the

calculator and the measure can be viewed as the ”player”
and ”slot machine”, respectively.

{
act1, act2

}
is the action

space containing two actions, i.e., increase or decrease the
filtering threshold. REW and TER are functions of reward
and termination, respectively.
• Action: The action represents how this calculator up-

dates the threshold based on the reward. Here we use the
ε-greedy strategy to plus or minus one step size S to the
filtering threshold in each action.
• Reward: The disparity between the mean importances

of two adjacent epochs determines the reward. The average
neighbor importance in the j-th view at the l-th layer for the
p-th epoch is calculated as follows:

AV G
(l)[p]
j =

∑
Gtrain

∑
A

(l∗)[p]
i,j (k,k′)>0

IMP
(l)
j (k, k′)∑

nk∈N T
(l)[p]
j |N(k)|

, (6)

where T
(l)[p]
j is the current filtering threshold, N(k) ={

nk′ : Ai,j(k, k
′) > 0

}
represents the initial neighbor set of

nk, T (l)[p]
j |N(k)| is the number of neighbors retained after

filtering, and A
(l∗)[p]
i,j is the filtered adjacency matrix of Gi,j ,

whose calculation is defined as follows:

A
(l∗)[p]
i,j (k, k′) =

{
1, RANK

(l)
j (k, k′) ≤ T (l)[p]

j |N(k)|
0, otherwise

, (7)

where RANK(l)
j (k, k′) ∈

[
1, |N(k)|

]
indicates the ranking

of importance score IMP
(l)
j (k, k′). Hence, the immediate

reward is determined as follows:

REW
(l)[p]
j =

{
−1, AV G

(l)[p]
j ≤ AV G(l)[p−1]

j

+1, AV G
(l)[p]
j > AV G

(l)[p−1]
j

. (8)

If the average importance of the newly selected neighbors is
larger than the previous one, we set the reward to positive
and increase the threshold by one step size, and vice versa.
• Termination: The termination condition TER is:∣∣∣∑p

p−10REW
(l)[p]
j

∣∣∣ ≤ 1. (9)

It means that the module has converged in the last ten
epochs, and the following training process will keep the cur-
rent threshold. It is worth noting that our RTGNN calculates
the neighbor importance scores and the filtering threshold
of each view in a view-parallel manner.

3.3 Feature Aggregation
Aggregation operations of RTGNN include node feature
fusion in each graph and a novel cross-view graph feature
fusion. For example, at the l-th layer, the feature tensor of
the multi-view graphs G is transferred as follows:

F(l−1) AGGintra−−−−−−−→ F(l∗) AGGinter−−−−−−−→ F(l), (10)

where F (l) ∈ RM×V×|N |×D(l)

means the output and input
of the l- and (l + 1)-th layer of the multi-view GNN model,
respectively, and F (l∗) ∈ RM×V×|N |×D(l∗)

represents the
the l-th layer’s transformed feature tensor, D(l) and D(l∗)

are the node feature dimensions of F (l) and F (l∗), respec-
tively. As the number of layers starts from 1, the initial input
of this part is F (0) (from Sec. 3.1).

3.3.1 Intra-graph Aggregation
We have obtained the enhanced adjacency tensor through
the neighbor ranking and filtering operations (i.e., Eq. (7)),
which is denoted as A(l∗) ∈ RM×V×|N |×|N | for simplicity.
Here we take GCN as an example to implement the intra-
graph aggregation. With the adjacency tensor A(l∗) and
feature tensor F (l−1), the l-th layer’s detailed node feature
propagation of AGGintra is as follows:

F(l∗) = σ
(
Â(l∗)F(l−1)Z(l)

intra

)
. (11)

If we focus on the single-view graph in the j-th view of the
i-th instance Gi, Eq. (11) is refined into the following form:

F
(l∗)
i,j = σ

(
Â

(l∗)
i,j F

(l−1)
i,j Z

(l)
intra,i,j

)
, (12)

where Z(l)
intra ∈ RM×V×D(l−1)×D(l∗)

is the layer-view-
specific (each view has an independent matrix at each layer)
transformation tensor that changes the node feature vectors’
dimension from D(l−1) to D(l∗), Zintra(i, j) = Zintra,i,j ,
and Â

(l∗)
i,j ∈ R|N |×|N | is the normalized version of A(l∗)

i,j .

6

Algorithm 1 RTGNN: Reinforcement Learning Guided Ten-
sor Graph Neural Network
Input: The multi-view graphs G including the node labels

Xi,j of each graph Gi,j and the label matrix Y
Output: The high-quality feature matrix E of G

1: F (0) ← Eq. (2) and Eq. (3) . Bridge Module
2: for p = 1, · · · , P do
3: for l = 1, · · · , L do
4: for j = 1, · · · , V do . RL-guided Module
5: IMP

(l)[p]
j ← Eq. (4) . Measure

6: L(l)
edge ← Eq. (5) . Measure Loss

7: if Eq. (9) is False then . Calculator
8: T

(l)[p]
j ← Eq. (6) and Eq. (8)

9: end if
10: A(l∗)[p](:, j, :, :)← Eq. (7)
11: F (l∗)[p](:, j, :, :)← Eq. (11) . Intra-graph Agg
12: end for
13: F (l)[p] ← Eq. (13) . Inter-graph Agg
14: end for
15: E[p] ← Eq. (14) . Feature Vectorization
16: LGNN ← Eq. (15) . GNN Loss
17: Lall ← Eq. (16) . Overall Loss
18: end for

3.3.2 Inter-graph Aggregation
After converting the feature tensor F (l−1) to the feature ten-
sor F (l∗) ∈ RM×V×|N |×D(l∗)

, we complete the inter-graph
aggregation of the multi-view GNN in a novel node-aware
manner. Concretely, we construct a trainable adjacency ten-
sorA+ ∈ RM×|N |×V×V to enable RTGNN to better fuse and
adapt multiple features encoded by the multi-view graphs
G. With the feature tensor F (l∗), we define the inter-graph
aggregation function AGGinter at the l-th layer as follows:

TRAN2,3(F(l)) = σ
(
A+(l)TRAN2,3(F(l∗))Z(l)

inter

)
, (13)

where TRAN2,3 exchanges of the second and third mode of
a tensor, so that TRAN2,3(F (l)) ∈ RM×|N |×V×D(l)

. Similar
to Z(l)

intra, Z(l)
inter ∈ RM×|N |×D(l∗)×D(l)

is a layer-specific
feature transformation tensor. Compared with the general
view-level weighted summation, the adjacency tensor A+

captures the combined weights of diverse views at a higher
granularity (node-level), resulting in the high learning flex-
ibility of RTGNN. If prior knowledge about the dependen-
cies among different views is available, it can be applied to
initialize A+ through fine-tuning or freezing. RTGNN is not
limited to the above convolution aggregations, and some
of its variants are tested in Sec. 4. At the last layer of the
model, we vectorize its output F (L) ∈ RM×V×|N |×D(L)

to
obtain the final feature matrix of G. The calculation process
implemented by mean pooling is defined as follows:

E(i) =
1

V |N |

V∑
j=1

|N|∑
k=1

F(L)(i, j, k, :), (14)

where E(i) ∈ R1×D(L)

is the i-th row of E and the D(L)-
dimensional feature representation of the i-th multi-view
graph instance Gi, and the vectorization process described
above can also be achieved by other methods, such as max
pooling and concatenation.

TABLE 2: Statistics for all datasets in the experiments.

Dataset Instances Classes Features Views
HIV 70 2 90 fMRI&DTI
BP 97 2 82 fMRI&DTI

BikeDC 72 4 267 weekday&weekend&month
PROTEINS 1000 2 80 sequence&molecule interaction

DBLP 4067 4 334 APA&APTPA&APVPA

3.4 Optimization
We learn the parameters of the multi-view GNN by mini-
mizing the discrepancy between the estimated and the given
matrix Y during the training phase, where the i-th row of Y
(i.e., Y(i)) is the vector label in the one-hot encoding form of
the i-th multi-view graph G(i) ∈ Gtrain. The cross entropy
loss of the multi-view GNN is as follows:

LGNN = −
∑
Gtrain

Y(i) log
(
FNN (L+1)

(
E(i)

))
. (15)

Together with the measure loss defined in Eq. (5), we denote
the overall loss of our RTGNN as follows:

Lall = LGNN +

L∑
l=1

L(l)
edge + µ

L+1∑
l=1

∥∥∥Θ(l)
∥∥∥
2
, (16)

where the third term is used to avoid overfitting, Θ(l) is
the parameter set of the model at the l-th layer, and µ is
the regularization coefficient. The overall objective function
can be efficiently optimized with gradient descent and back
propagation algorithms. The detailed algorithm of our RT-
GNN is presented in Alg. 1.

4 EXPERIMENTS

First of all, we describe the experimental setups, includ-
ing datasets (Sec. 4.1), baselines and evaluation metrics
(Sec. 4.2), and implementation details (Sec. 4.3). Then, we
conduct a series of classification tasks, clustering tasks,
ablation studies, hyperparameter analysis and discussion to
solve five key research questions (RQ):
• RQ1. How does RTGNN compare with the state-of-the-

art (SOTA) baselines on classification tasks? (Sec. 4.4)
• RQ2. How does our RTGNN compare with the SOTA

baselines on clustering tasks? (Sec. 4.5)
• RQ3. How much do the bridge and RL-guided module

included in RTGNN improve the representation learning
capabilities of GNNs for multi-view graphs? (Sec. 4.6)
• RQ4. How do important hyperparameters in RTGNN

affect the performance of representation learning? (Sec. 4.7)
• RQ5. What are the advantages and potential limitations

of the proposed RTGNN? (Sec. 4.8)

4.1 Datasets and Processing
Five multi-view graph datasets covering four domains (i.e.,
brain science, urban traffic, bioinformatics, and academics)
are used for evaluation. Table 2 gives the statistics of them,
whose more details are described as follows:
• Human Immunodeficiency Virus (HIV): The original

brain dataset is collected by Chicago Early HIV Infection
Study at Northwestern University [38] from two views, i.e.,
functional magnetic resonance imaging (fMRI) and diffu-
sion tensor imaging (DTI). There are idiosyncratic differ-
ences between these two views. Concretely, the structures

7

of fMRI-derived graphs encode functional activities among
brain regions. In contrast, in DTI-derived graphs, the struc-
tures capture the white matter fiber pathways that connect
different brain regions. We randomly select 35 HIV patients
and 35 healthy controls, where these two groups have no
difference in the character portraits, such as gender, age and
educational base. Similar to the processing process proposed
in [8], we process HIV data according to the following steps.
First, the fMRI data is processed by the DPARSF [39]. All
brain images are realigned to the first volume, and we per-
form time rectification and normalization to standard MNI
templates. Then, a Gaussian kernel is used to smooth the
normalized brain images spatially. The band-pass filtering
and linear trending analysis are also performed to elimi-
nate the interference from the low-frequency drift or high-
frequency noise. After that, for each brain, the gray matter
is divided into 116 anatomical volumes of interest through
the automatic anatomical labeling atlas, where each atlas
represents a specific brain region. Finally, by eliminating 26
cerebellar regions and calculating the correlations (as edges)
among the remaining 90 labeled brain regions (as nodes),
we can obtain the brain graphs of all subjects. Similarly,
we use the FSL toolbox [40], including distortion correction,
noise removal, and over-sampling from each voxel’s main
diffusion direction distribution to deal with DTI. Then we
construct the DTI-derived brain graphs that share the same
nodes as the fMRI-derived brain graphs. The two-view brain
graph of a subject is regarded as an instance.
• Bipolar Disorder (BP): This brain dataset [41] also

contains fMRI and DTI views, including 52 patients with
bipolar disorder and 45 age and gender matched healthy
controls. Following the work [8], we use the CONN tool-
box [42] to build brain graphs with 82 labeled nodes. Con-
sidering that the connections of the initial brain graphs ob-
tained through the above processing may not all be effective,
we follow the work in [3] to generate more reliable weighted
adjacency tensors for the HIV and BP datasets.
• Capital Bikeshare Data (BikeDC): This urban traffic

dataset 1 comes from the Washington D.C. Bicycle System,
from which we collect station traffic records over six years
(i.e., from 2015 to 2020). Inspired by the work in [20], we
delete some bicycle stations with no records or few records
and then cluster them into four categories with a total of 267
coarse stations based on their location attributes (latitude,
longitude, etc.). For any pair of coarse stations (as nodes),
we can obtain the different traffic flows (as edges) between
them in three temporal views (i.e., weekday, weekend, and
month), where the inflow and outflow are the numbers
of bicycles checked in and out of the station, respectively.
Therefore, we treat the three-view traffic graph extracted
within a month as an instance whose label is the correspond-
ing season (i.e., spring, summer, autumn or winter).
• PROTEINS: This is a bioinformatics dataset [43] that

requires accurate distinction between enzymatic and non-
enzymatic protein molecules. Inspired by the work [44], we
collect 1000 molecules from the original dataset as instances,
where each molecule instance is processed as a graph with
sequence view and molecule interaction view, and the nodes
are four types of amino acids.

1. https://www.capitalbikeshare.com/system-data

•DBLP: This is a computer science bibliography dataset.
We adopt a subset of DBLP extracted by [45], which contains
4057 authors (A), 20 venues (V), 8789 terms (T) and 14328
papers (P). The authors are labeled in four categories, i.e.,
database, data mining, information retrieval and machine
learning. Notably, DBLP is not a natural multi-view dataset
but a heterogeneous graph network. Unlike the above four
multi-view scenes, we apply a relation-based graph split-
ting strategy to generate three homogeneous graphs with
different semantics. Specifically, we treat authors as the
graph’s nodes and develop three view relations: A-P-A links
two co-authors. A-P-T-P-A links two persons whose papers
containing same terms. A-P-V-P-A links two persons whose
papers are published in the same venue.

4.2 Baselines and Metrics
We choose the following ten SOTA graph-based methods
or GNN-based methods designed for multi-view graph
representation learning as baselines.
• Graph-based Methods: 1) CoRegSC [46] is proposed

for multi-view clustering through co-regularized. Here, the
centroid-based strategy is utilized for learning multi-view
graphs’ representations. 2) MultiNMF [47] is a cluster-
ing method that applies non-negative matrix factorization,
the goal of which is to find a scheme that provides a
suitable clustering implementation across multiple views.
3) RMSC [48] is a multi-view spectral clustering method
with great robustness and considering the application of
low rank and sparse decomposition. 4) AMGL [49] is a
representation learning method that learns each graph’s best
weight without additional parameters. 5) M2E [5] is a multi-
view multi-graph representation learning framework based
on partially-symmetric tensor decomposition.
• GNN-based Methods: 1) GCN [12] is a graph repre-

sentation learning model that performs convolution opera-
tions in the graph Fourier domain. 2) GAT [16] is a graph
representation learning model that performs convolution
operations on topological graphs based on an incorporated
attention mechanism. 3) HAN [29] is a heterogeneous graph
learning model that learns relation-specific representations
from different homogeneous graphs and uses attention
techniques to fuse them into the final feature matrix. 4)
MAGNN [28] is a heterogeneous graph representation
learning model that utilizes linear transformation to learn
node attributes and applies a special encoder to aggregate
node-level information. 5) TensorGCN [31] is a recently pro-
posed tensor GCN-based representation learning method
for multi-view graph scenes.
• Our Methods: 1) Two variants of RTGNN, namely

RTGNN-mean and RTGNN-att, are proposed for classifi-
cation or clustering tasks. They apply mean and attention
operations instead of convolution operations in the inter-
graph aggregation, respectively. 2) Four additional variants
of RTGNN are proposed for ablation studies. RTGNN-
m0 is equivalent to RTGNN with two modules removed.
RTGNN-m1 and RTGNN-m2 represent that RTGNN only
utilizes the bridge and RL-guided module, respectively.
RTGNN-m3 only uses the proposed measure and manually
sets the filtering thresholds.

To measure the effectiveness of all these methods, we
employ two frequently applied metrics, i.e., Macro-F1 (Ma-

https://www.capitalbikeshare.com/system-data

8

TABLE 3: Experiment results (%) of classification tasks on four datasets. The best results of all methods are shown in bold.
The best results of all baselines are shown in italics. ↑ indicates the relative improvement of RTGNN to the best baseline.

Methods Train%
HIV BP BikeDC DBLP

Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

G
ra

ph
-b

as
ed

M
et

ho
ds

CoRegSC
20% 49.34 ± 03.17 50.51 ± 04.72 46.31 ± 08.02 54.00 ± 02.63 20.47 ± 04.67 35.29 ± 03.72 80.63 ± 00.28 81.61 ± 00.93
60% 59.19 ± 07.16 60.14 ± 09.56 54.13 ± 07.24 57.82 ± 04.36 29.05 ± 03.75 43.52 ± 05.99 82.90 ± 00.15 83.88 ± 00.33

MultiNMF
20% 48.85 ± 06.94 49.19 ± 03.81 53.84 ± 09.24 58.22 ± 05.60 22.24 ± 02.75 37.35 ± 02.29 78.43 ± 00.43 79.20 ± 00.70
60% 53.36 ± 08.89 54.71 ± 04.19 55.10 ± 07.58 58.69 ± 06.22 26.21 ± 02.77 42.35 ± 04.40 82.02 ± 00.20 82.57 ± 00.19

RMSC
20% 51.24 ± 06.93 51.69 ± 06.47 43.95 ± 08.19 53.33 ± 03.29 20.38 ± 03.58 34.11 ± 02.99 83.46 ± 00.51 83.82 ± 00.18
60% 62.50 ± 09.54 63.12 ± 06.07 53.96 ± 06.98 57.39 ± 03.79 30.57 ± 06.14 45.88 ± 08.64 84.89 ± 00.27 85.03 ± 00.32

AMGL
20% 48.26 ± 08.68 49.48 ± 03.06 33.82 ± 10.68 51.11 ± 04.24 19.21 ± 05.97 35.58 ± 05.17 80.52 ± 00.21 81.38 ± 00.91
60% 56.60 ± 09.54 58.76 ± 08.47 34.28 ± 09.31 52.17 ± 05.49 25.84 ± 04.85 43.52 ± 06.55 84.50 ± 00.37 85.11 ± 00.13

M2E
20% 53.98 ± 03.03 56.25 ± 05.13 51.47 ± 07.45 55.55 ± 03.71 22.85 ± 05.22 38.23 ± 04.36 83.45 ± 00.12 83.82 ± 00.18
60% 63.75 ± 03.75 65.00 ± 05.00 54.70 ± 06.98 56.95 ± 05.97 30.21 ± 03.75 45.88 ± 06.85 85.74 ± 00.05 86.41 ± 00.09

G
N

N
-b

as
ed

M
et

ho
ds

GCN
20% 55.60 ± 03.03 56.56 ± 03.93 50.54 ± 08.94 55.77 ± 03.50 22.75 ± 03.28 39.11 ± 03.49 89.12 ± 00.17 89.94 ± 00.16
60% 65.73 ± 04.85 67.50 ± 04.67 57.24 ± 07.12 59.56 ± 05.84 30.73 ± 03.57 48.23 ± 04.40 90.17 ± 00.05 90.40 ± 00.12

GAT
20% 55.98 ± 04.73 56.25 ± 02.82 50.58 ± 06.98 55.55 ± 02.81 23.83 ± 04.33 39.70 ± 03.54 91.06 ± 00.03 91.19 ± 00.07
60% 65.69 ± 04.19 68.75 ± 04.14 57.57 ± 05.88 60.00 ± 05.07 31.98 ± 04.73 48.23 ± 06.33 91.94 ± 00.18 92.35 ± 00.09

HAN
20% 58.90 ± 05.04 60.00 ± 03.64 56.18 ± 06.31 59.33 ± 04.97 25.40 ± 02.26 40.00 ± 03.52 91.92 ± 00.08 92.42 ± 00.07
60% 69.55 ± 04.23 70.62 ± 04.88 60.29 ± 02.50 62.60 ± 03.47 33.07 ± 05.16 50.00 ± 03.94 92.10 ± 00.04 93.56 ± 00.12

MAGNN
20% 56.66 ± 04.75 58.43 ± 03.14 54.01 ± 05.91 57.11 ± 02.63 24.04 ± 03.53 37.05 ± 04.20 93.30 ± 00.27 93.82 ± 00.32
60% 69.84 ± 04.59 71.25 ± 05.00 59.74 ± 06.62 62.17 ± 05.16 32.10 ± 06.47 49.41 ± 06.55 94.35 ± 00.06 94.58 ± 00.41

TensorGCN
20% 59.02 ± 04.38 60.31 ± 02.81 53.07 ± 07.54 56.88 ± 04.68 25.30 ± 02.68 40.29 ± 03.73 92.40 ± 00.24 93.08 ± 00.11
60% 70.98 ± 04.36 72.50 ± 05.00 60.29 ± 08.42 61.73 ± 08.43 33.99 ± 08.56 50.58 ± 09.18 93.30 ± 00.13 93.99 ± 00.09

O
ur

M
et

ho
ds

RTGNN
-mean

20% 64.48 ± 05.97 66.87 ± 05.44 57.13 ± 09.55 59.77 ± 05.74 31.84 ± 06.01 44.41 ± 03.82 94.13 ± 00.07 94.58 ± 00.06
60% 72.23 ± 08.59 73.75 ± 08.29 63.86 ± 05.51 64.34 ± 05.43 45.35 ± 09.68 54.11 ± 10.12 95.19 ± 00.41 95.48 ± 00.36

RTGNN
-att

20% 65.26 ± 07.05 67.18 ± 05.45 58.09 ± 03.15 60.44 ± 02.39 33.48 ± 03.98 45.58 ± 01.97 94.30 ± 00.12 94.76± 00.30
60% 73.07 ± 06.88 74.37 ± 05.89 65.67 ± 05.50 66.08 ± 05.43 46.27 ± 08.05 55.88 ± 05.42 95.21 ± 00.16 95.56 ± 00.05

RTGNN
20% 65.74 ± 05.75 67.50 ± 06.43 60.70 ± 04.62 61.11 ± 04.44 35.22 ± 07.25 45.88 ± 03.76 94.50 ± 00.13 94.91 ± 00.15
60% 75.14 ± 08.18 76.25 ± 08.29 66.12 ± 06.00 66.52 ± 06.16 48.25 ± 05.10 57.05 ± 04.59 95.42 ± 00.26 95.62 ± 00.44

Gain
20% 6.72 ↑ 7.19 ↑ 4.52 ↑ 1.78 ↑ 9.82 ↑ 5.59 ↑ 1.20 ↑ 1.09 ↑
60% 4.16 ↑ 3.75 ↑ 5.83 ↑ 3.92 ↑ 14.26 ↑ 6.47 ↑ 1.07 ↑ 1.04 ↑

F1) and Micro-F1 (Mi-F1), to expose the classification perfor-
mance. Besides, we apply normalized mutual information
(NMI) and adjusted rand index (ARI) to quantitatively
evaluate/verify the clustering performance.

4.3 Implementation Details
For our RTGNN and its six variants, we first study the
parameters related to the bridge and RL-guided module. For
the bridge module, we need to consider the rank of HOSVD
and the dimension of the common feature space. Specifi-
cally, since the projecting process mentioned in Sec. 3.1 only
involves the factor matrices (i.e., U and V in Eq. (3)) of
the last two modes (i.e., nodes and features) and different
factor matrices can be calculated independently in HOSVD,
we only need to consider the calculation of U and V.
Considering that the 1-mode product of TRAN(U) and
the initial feature matrix F affects the dimension of the
node mode of the corresponding enhanced feature matrix
F̂, U should be a square matrix whose dimension is equal
to the number of nodes, i.e., U = I ∈ R|N |×|N |. Unlike
U, the factor matrix V of the feature mode of the initial
feature tensor F (0) determines the dimension of the com-
mon feature space after 2-mode product. We argue that
the enhanced feature matrix F̂ should maintain the same
feature dimension as the initial feature matrix F to ensure
the fairness of subsequent ablation studies. Therefore, we
still retain all the singular values in the process of calculating
V. In particular, because multi-view datasets like HIV and
BP do not contain feature tensors, we follow the standard

strategy used in previous multi-view graph analysis [1],
[5], [3], i.e., the initial adjacency tensor is viewed as the
input feature tensor of RTGNN. Hence, the dimension of the
common feature space in the multi-view datasets is equal to
the number of nodes. For the RL-guided module, we start
the filtering threshold calculator at the end of the second
epoch and the initial filtering threshold for each view to 0.5.
Finally, the number of GNN layers is set to 1.

For GCN and GAT, we follow the previous works in [29],
[28] to perform them on each view separately and report
the best results. For all methods for spectral clustering, we
build RBF kernel matrices with width equal to the median
distance between all multi-view graphs. For all the deep
learning methods, we employ the Adam optimizer with
a learning rate of 0.005 and the weight decay of 0.001.
Furthermore, we train them for 100 epochs with the dropout
rate of 0.5 and utilize early stopping with a patience of 5.
For methods involving attention mechanisms, we set the
number of attention heads to 8 and the dimension of the
attention vector to 128. For a fair comparison, We set the
dimensionD(L) of the final feature matrix E ∈ RM×D(L)

ob-
tained by all the above methods to 64. We tune all baselines’
parameters through the policies developed in their works
and report their performance with the optimal settings. We
divide the first four datasets into training, validation, and
test sets according to the ratio of 3:1:6, and divide the DBLP
dataset according to the ratio/split of 1:1:8. Each experiment
is repeated 20 times using the same data splits and take the
mean values as the results.

9

Fig. 3: Visualization of clustering experiments on the BikeDC dataset. The white dots represent the results of 20 repeated
experiments, and the values represent the average results under the metric ARI (%).

TABLE 4: Experiment results (%) on the PROTEINS dataset
for multi-view graph classification.

Methods
PROTEINS

Ma-F1 Mi-F1
20% 60% 20% 60%

GCN 71.06 ± 0.24 74.60 ± 0.69 72.16 ± 0.21 76.25 ± 0.67

GAT 71.32 ± 0.59 75.16 ± 0.85 72.19 ± 0.49 75.58 ± 0.94

HAN 71.98 ± 0.59 76.04 ± 0.51 72.58 ± 0.62 76.83 ± 0.50
MAGNN 72.19 ± 0.59 75.97 ± 1.25 72.66 ± 0.65 76.58 ± 1.24

TensorGCN 72.19 ± 0.60 75.93 ± 0.69 72.75 ± 0.58 76.50 ± 0.67

RTGNN 73.28 ± 0.48 77.08 ± 1.18 73.81 ± 0.54 77.79 ± 1.19

Gain 1.51 ↑ 1.37 ↑ 1.46 ↑ 1.25 ↑

4.4 Classification Results (RQ1)
We conduct experiments on all datasets to compare the
performance of different methods on classification tasks.
Following the work [28], we feed the low-dimensional fea-
ture vectors of every method into Support Vector Machine
(SVM) at different training ratios (i.e., 20% and 60%) to
achieve classification. Considering that we only provide the
test set to the linear SVM, the training and testing ratios here
only concern the test set. From the results shown in Table 3,
we can draw six conclusions:

1) The proposed RTGNN consistently outperforms all
baselines on the four datasets (i.e., HIV, BP, BikeDC and
DBLP) and achieves the maximum 14.26% performance
improvement over the second-best method. This is because
the two modules contained in RTGNN effectively reinforce
the aggregation operations. First, the bridge module takes
advantage of tensor decomposition in capturing the PCI
of multiple views and reduces the risk of graph feature
fusion conflicts in the inter-graph aggregation. Second, the
RL-guided module facilitates the GSF mining (i.e., intra-
graph aggregation) by dynamically finding the most valu-
able neighbors for each graph, which is infeasible for all
baselines. 2) Among all the baselines, GCN and GAT are
two methods designed for single-view graph representation
learning. We find that they both achieve lower F1 scores
than the other multi-view GNN-based methods. This phe-
nomenon demonstrates that different views can be comple-
mentary, and combining the information of multiple views
may produce a better graph feature matrix than that of
a single view. The extended multi-channel GNN is more
suitable for processing multi-view graphs than traditional
GNNs. 3) Compared with HAN and MAGNN, TensorGCN
performs better on the HIV and BikeDC but slightly worse
on the BP dataset. The possible reason is that the cross-
view adjacency tensor applied in TensorGCN encodes the
interaction between graph structures, thereby achieving bet-
ter inter-graph aggregation than the weighted summation,

TABLE 5: Experiment results (%) of clustering tasks on two
brain science datasets.

Methods Metrics HIV BP

Graph-based
Methods

CoRegSC
NMI 18.51 ± 06.53 12.22 ± 06.62
ARI 11.01 ± 06.32 07.53 ± 08.68

MultiNMF
NMI 14.21 ± 07.68 14.17 ± 06.26
ARI 08.33 ± 06.49 11.58 ± 07.11

RMSC
NMI 15.85 ± 08.54 13.65 ± 08.57
ARI 07.73 ± 04.06 10.50 ± 05.02

AMGL
NMI 09.62 ± 07.72 09.10 ± 07.46
ARI 06.90 ± 07.05 05.27 ± 09.58

M2E
NMI 19.52 ± 08.46 13.33 ± 10.84
ARI 07.86 ± 05.12 12.55 ± 10.12

GNN-based
Methods

GCN
NMI 20.67 ± 09.70 13.49 ± 05.18
ARI 11.61 ± 07.42 11.88 ± 04.47

GAT
NMI 20.16 ± 07.17 13.65 ± 08.57
ARI 11.83 ± 05.35 12.59 ± 09.05

HAN
NMI 23.73 ± 07.17 18.51 ± 08.86
ARI 17.59 ± 14.75 13.34 ± 08.19

MAGNN
NMI 19.30 ± 10.96 16.20 ± 06.08
ARI 20.33 ± 11.98 13.68 ± 07.63

TensorGCN
NMI 24.38 ± 13.50 17.27 ± 06.93
ARI 19.44 ± 09.14 13.98 ± 07.93

Our
Method

RTGNN
NMI 35.02 ± 11.43 19.70 ± 06.38
ARI 30.86 ± 10.81 17.26 ± 09.80

Gain
NMI 10.64 ↑ 1.19 ↑
ARI 10.53 ↑ 3.28 ↑

especially when the number of views is large. Adopting a
similar fusion strategy, our node-aware inter-graph aggre-
gation optimizes the cross-views adjacency tensors through
model training rather than prior knowledge to avoid de-
generating into a mean operation when there are only two
views. Therefore, RTGNN always beats all its variants. 4) On
the DBLP dataset, MAGNN stands out among all baselines
because it can judiciously transcribe the heterogeneous node
features. Even though the classification results of MAGNN
are remarkable, RTGNN still obtains higher scores than
them. Considering that RTGNN only uses homogeneous
node features, the above phenomenon again verifies the
effectiveness of the proposed RL-guided module. Further-
more, it confirms that our RTGNN can handle not only
natural multi-view graph data but also assist in internal
multi-view analysis of heterogeneous graph networks. 5)
The four multi-view graph-based baselines (i.e., CoRegSC,
MultiNMF, RMSC, and AMGL) have a commonality, i.e.,
the learned view features are all represented by vectors.
Unfortunately, for the multi-view graph, the topological
feature information is hardly persevered by the flattened
dense feature vectors, which could be the underlying reason
why they are always weaker than the GNN-based methods.
6) By applying a tensor decomposition algorithm to encode
multi-view graph-structured data, M2E explores multiple

10

(a) RMSC (b) M2E (c) HAN (d) MAGNN (e) TensorGCN (f) RTGNN

Fig. 4: Visualization of graph representations learned by six methods on the PROTEINS. The red dots represent enzyme
molecules, the blue dots represent non-enzyme molecules, and the values is the average results under the metric NMI (%).

(a) HIV (b) BP

(c) BikeDC (d) DBLP

Fig. 5: Visualization of ablation studies related to classification tasks on the HIV, BP, BikeDC, and DBLP.

views and graphs simultaneously in the common feature
space like our RTGNN, which performs better than the
other multi-view graph-based methods. Nevertheless, M2E
cannot fully exploit the graph structural features of each
view like the GNN-based methods. These observations in-
dicate the necessity of PCI and GSF mining for reinforcing
multi-view graph representations and verify our motivation
for building the bridge module and a series of feature
aggregation operations.

Since there are fewer instances in HIV, BP, and BikeDC,
we further verify the scalability of RTGNN on the PRO-
TEINS dataset. The classification results in Table 4 again
verify that RTGNN is superior to the excellent GNN-based
baselines on the larger multi-view graph dataset.

4.5 Clustering Results (RQ2)

We compare the performance of multiple methods on
multi-view graph clustering tasks (i.e., the HIV and BP
dataset). Following the previous works in [48], [49], [5],
[29], [28], we input the low-dimensional features of multi-
view graphs into the K-means technique. The number of
classes/categories per multi-view dataset determines the
number of clusters in K-means (e.g., 2 for both the HIV and
BP). As mentioned in Sec. 4.3, we repeat each clustering
experiment 20 times to overcome the disturbance of center
initialization on the results. From the results shown in
Table 5, conclusions similar to those of classification experi-
ments can be drawn, which proves that our RTGNN learns

more distinguishable representations than the state-of-the-
art baselines. Specifically, RTGNN achieves the maximum
10.63% performance improvement over the best baseline.
To better illustrate the feature quality of the multi-view
graphs, we visually compare some methods on the BikeDC
and PROTEINS dataset. As shown in Fig. 3, compared with
baselines, RTGNN has more minor fluctuations while ob-
taining higher ARI values. Based on t-SNE, Fig. 4 illustrates
that RTGNN learns higher quality representations with less
overlap and better separation of groups.

4.6 Ablation Studies (RQ3)

Furthermore, we perform a lot of ablation studies to explore
the specific effects of the bridge module and RL-guided
module included in our RTGNN on the above classification
and clustering tasks. For classification tasks, we will focus
on the experiments of RTGNN with two training ratios un-
der the metric Macro-F1. For clustering tasks, we will focus
on the experiments under the metric NMI. Fig. 5 illustrates
the results of the ablation studies on four classification tasks,
from which we draw the following five conclusions:

1) Although the variants of RTGNN cannot achieve
the best performance after removing the bridge module or
RL-guided module, they are still better than the strongest
baselines on the HIV, BP and BikeDC dataset. This indicates
that these two modules effectively improve the multi-view
GNN and harmoniously coexist. 2) On the HIV and BP,
the bridge module is more important than the RL-guided

11

(a) HIV (b) BP (c) BikeDC (d) DBLP

Fig. 6: Visualization of the adaptive update process of filtering thresholds for different datasets and different views.

(a) HIV (b) BP (c) BikeDC

Fig. 7: Performance comparison between original GNNs and GNNs enhanced by the RL-guided module on clustering and
classification in each view of different datasets. The red dot in each box indicates the corresponding average result.

module, which is reflected by the fact that RTGNN-m1
is better than RTGNN-m2 under different training ratios.
In contrast, the RL-guided module shows its promising
advantages on the BikeDC and DBLP. The first phenomenon
can be explained by the large differences in the features of
different views of the brain science datasets. RTGNN-m1
projects different view features into the common feature
space, which alleviates the feature fusion conflicts in the
inter-graph aggregation. For the second phenomenon, the
possible reason is that the BikeDC and DBLP dataset have
richer neighbor information, so RTGNN-m2, which removes
the interference of irrelevant neighbors, stands out among
the variants. 3) From Fig. 6, we find that the RL-guided
module simultaneously updates multiple filtering thresh-
olds during the model training process and dynamically
determine the stop time according to the convergence con-
dition (i.e., Eq. (9)). 4) The optimal filtering thresholds for
different views in different datasets can vary greatly. Views
that encode more edges may not necessarily be assigned
larger filter thresholds. For example, in the brain science
dataset, the edge density of the graphs in fMRI is often
higher than that of DTI, and the thresholds of the former
are smaller than those of the latter (as shown in Fig. 6(a)
and Fig. 6(b)). These observations indicate that there may be
some neighbors in the graph that are worthless for represen-
tation learning, and reveal the inefficiency and unreliability
of manual settings and the robustness of our RTGNN to
view changes. 5) The last sub-graph in Fig. 5 corresponds to
DBLP. Considering that there are no multiple natural views
in DBLP, we directly use the initial features just like the pre-
vious works in [29], [28]. Specifically, we compare RTGNN-
m2 with RTGNN-m3, equivalent to RTGNN-m2 without

the threshold calculator. The results show that RTGNN-
m3 is relatively weak but still surpasses the best baseline,
verifying the effectiveness of the importance measure and
node-aware inter-graph aggregation.

In addition, we compare the performance of the original
GNNs and the GNNs enhanced by the RL-guided module
on clustering and classification in different views of different
datasets. It can be seen from the visualization results in
Fig. 7 that the proposed RL-guided module improves the
performance of the original GNNs in different views. This
verifies that the RL-guided module has excellent transfer-
ability, i.e., it is suitable for both single-view and multi-view
graph representation learning.

4.7 Hyperparameter Analysis (RQ4)
We study the impact of important hyperparameters of RT-
GNN, namely the number of GNN layers, the dimension
of representations and the initial filtering thresholds. Specif-
ically, we will focus on the classification experiments with
the training ratio of 60% under the metric Micro-F1. Fig. 8(a)
shows that as the number of GNN layers increases, the
performance of RTGNN tends to decrease. We argue that
this is caused by the over-smoothing problem [24] that
GNN-based methods often face. From Fig. 8(b), it can be
seen that the quality of the multi-view graph representation
learning of RTGNN is not easily affected by the change of
the representation dimension, especially on the PROTEINS
and DBLP dataset. The sensitivity analysis of the filtering
threshold initialization on the BikeDC and DBLP dataset
illustrated in Fig. 8(c) attests that the proposed RL-guided
module stably finds the optimal threshold interval regard-
less of the initial values.

12

(a) Number of GNN layers (b) Dimension of representations (c) Initial filtering threshold

Fig. 8: Parameter sensitivity analysis of RTGNN on the five datasets.

Fig. 9: Comparison of execution time (Minute) and space
requirements (Gigabyte) of different methods. The blue val-
ues correspond to RTGNN, and the red values correspond
to the optimal consumption of the baselines.

4.8 Discussion (RQ5)
Based on the multi-view GNN and two modules, RTGNN
outperforms the baselines on five datasets. However, the
introduction of modules may make RTGNN have poten-
tial limitations in terms of execution time and space re-
quirements. For the bridge module, it requires additional
runtime and memory space while using the core tensor to
capture correlations. It takes O(MV |N |Dmin(|N |,MV D)
+O(MV |N |Dmin(D,MV |N |)) to calculate the two projec-
tion matrices of the input tensor F ∈ RM×V×|N |×D . Then it
needs to take O(MV |N |Dmin(|N |, D)) on the input tensor
to enhance each feature matrix F ∈ R|N |×D. For the RL-
guided module, it needs O(LV (M |N |2D + 1)) to achieve
threshold calculation and neighbor filtering in all views for
each epoch. And we take O(LMV |N |(2Dmin(|N |, D, V)))
for feature aggregation within the multi-view GNN and
O(MV |N |) to perform vectorization. Hence, the computa-
tional complexity of RTGNN is O(LVM |N |2D), which is
acceptable but can still be improved in the future.

Fig. 9 illustrates the execution time and maximum mem-
ory space requirements of different methods of running
an epoch on different datasets, where all experiments are
performed on an NVIDIA Tesla P100 16G GPU. We observe
that the time and space requirements of RTGNN on the five
datasets are greater than (which is acceptable) the optimal
consumption of the baselines. Considering the excellent per-
formance of RTGNN, we argue that it is worth sacrificing a
certain amount of time and space in exchange for improving
the quality of representation learning.

5 RELATED WORK

Existing literature can be roughly classified into tensor-
based multi-view graph representation, tensor graph neural
networks, and GNN models with neighbor selection.

5.1 Tensor-based Multi-view Graph Representation
Many tensor-based methods for multi-view graph repre-
sentation learning have been proposed. For example, [50]
proposed a graph-based multi-view representation integra-
tion method, which captures higher-order information by
mapping the original graph to a set of cross-view tensor
product graphs. [8] proposed a multi-view clustering frame-
work, first stacking multi-view graphs into tensors, and then
learning graph embeddings based on CP tensor decomposi-
tion. [5] presented a multi-view multi-graph representation
framework with partially-symmetric tensor decomposition.
However, most of the existing methods are based on shallow
frameworks or models and cannot mine the deep features of
multi-view graphs like GNNs.

5.2 Tensor Graph Neural Networks
The existing tensor graph neural networks are usually
based on GCNs. [51] proposed a tensor GCN that globally
models those sub-graphs factorized from a large graph.
Recently, [32] proposed a tensor framework based on resid-
ual GCN layers, enabling robust learning for single- or
multi-relational data when the underlying topology is per-
turbed. [31] represented the text semantics as a three-
dimensional graph tensor and then performed two kinds
of propagation learning on the network tensor for text
classification. Although they all involve the combination of
tensor techniques and multiplex GCNs, they only extend
the matrix operations of GCN to the multi-channel tensor
version. That is, they do not involve the utilization of Tucker
decomposition to capture the PCI of the multi-view graphs,
nor do they consider ranking and filtering the neighbor
nodes in the graph to reinforce the intra-graph aggregation.

5.3 GNN Models with Neighbor Selection
Recently, GNNs with neighbor selection have received in-
creasing attention. For example, [25] proposed a label-
aware GCN, which filters irrelevant neighbors based on
node labels to improve the node classification performances
of GNN models (including GAT). To avoid the over-
assimilation of the representations of different types of
nodes in GNN aggregation, [26] proposed a multi-relational
GNN framework that contains a relation-aware mechanism
for neighbor filtering. However, the existing methods do not
apply edge information widely existing in graph data to
assist neighbor selection.

13

6 CONCLUSION

In this paper, we propose a novel multi-view GNN-based
framework, namely RTGNN, for graph representation learn-
ing. To reinforce the inter-graph aggregation of the multi-
view GNN, we propose a new bridge module based on
HOSVD and node-aware aggregation. To reinforce the intra-
graph aggregation, we propose the RL-guided module com-
posed of a neighbor importance measure and a filtering
threshold calculator. The two modules included in RTGNN
can be easily ported to other methods. Experimental results
and analysis demonstrate that RTGNN consistently sur-
passes SOTA baselines on five real-world multi-view scenes.
In the future, we will focus on how to effectively combine
tensor decomposition and GNNs to further reduce time and
space requirements while ensuring performance.

ACKNOWLEDGMENT

The authors of this paper are supported by the National
Key R&D Program of China through grant 2021YFB1714800,
NSFC through grants 62002007, U20B2053 and 62172443,
S&T Program of Hebei through grant 20310101D, the ARC
DECRA Project (No. DE200100964), and Fundamental Re-
search Funds for the Central Universities. Thanks for com-
puting infrastructure provided by Huawei MindSpore plat-
form. Philip S. Yu is partially supported by NSF under
grants III-1909323, III-2106758, and SaTC-1930941.

REFERENCES

[1] S. Wang, L. He, B. Cao, C.-T. Lu, P. S. Yu, and A. B. Ragin,
“Structural deep brain network mining,” in KDD. ACM, 2017,
pp. 475–484.

[2] M. Zhang, T. Li, Y. Li, and P. Hui, “Multi-view joint graph
representation learning for urban region embedding,” in IJCAI,
2020, pp. 4431–4437.

[3] X. Zhang, L. He, K. Chen, Y. Luo, J. Zhou, and F. Wang, “Multi-
view graph convolutional network and its applications on neu-
roimage analysis for parkinson’s disease,” in AMIA Annual Sym-
posium Proceedings. AMIA, 2018, pp. 1147–1156.

[4] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view rep-
resentation learning on graphs,” in ICML. PMLR, 2020, pp. 4116–
4126.

[5] Y. Liu, L. He, B. Cao, P. S. Yu, A. B. Ragin, and A. D. Leow,
“Multi-view multi-graph embedding for brain network clustering
analysis,” in AAAI. AAAI Press, 2018, pp. 117–124.

[6] J. Cheng, Q. Wang, Z. Tao, D. Xie, and Q. Gao, “Multi-view
attribute graph convolution networks for clustering,” in IJCAI,
2020, pp. 2973–2979.

[7] C. Liu, Z. Liao, Y. Ma, and K. Zhan, “Stationary diffusion state
neural estimation for multiview clustering,” in AAAI, 2022, pp.
1–8.

[8] G. Ma, L. He, C.-T. Lu, W. Shao, P. S. Yu, A. D. Leow, and
A. B. Ragin, “Multi-view clustering with graph embedding for
connectome analysis,” in CIKM. ACM, 2017, pp. 127–136.

[9] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in KDD. ACM, 2014, pp. 701–710.

[10] H. Peng, R. Yang, Z. Wang, J. Li, L. He, P. S. Yu, A. Y. Zomaya,
and R. Ranjan, “Lime: Low-cost incremental learning for dynamic
heterogeneous information networks,” IEEE Transactions on Com-
puters, 2021.

[11] M. R. Khan and J. E. Blumenstock, “Multi-gcn: Graph convo-
lutional networks for multi-view networks, with applications to
global poverty,” in AAAI, vol. 33, no. 01, 2019, pp. 606–613.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2017, pp. 1–14.

[13] J. Li, H. Peng, Y. Cao, Y. Dou, H. Zhang, P. Yu, and L. He, “Higher-
order attribute-enhancing heterogeneous graph neural networks,”
IEEE TKDE, no. 01, pp. 1–1, 2021.

[14] H. Peng, J. Li, Y. Song, R. Yang, R. Ranjan, P. S. Yu, and L. He,
“Streaming social event detection and evolution discovery in
heterogeneous information networks,” ACM Trans. Knowl. Discov.
Data, vol. 15, no. 5, pp. 1–33, 2021.

[15] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in NIPS, 2017, pp. 1024–1034.

[16] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018, pp. 1–14.

[17] S. Li, W.-T. Li, and W. Wang, “Co-gcn for multi-view semi-
supervised learning,” in AAAI. AAAI Press, 2020, pp. 4691–4698.

[18] S. Fan, X. Wang, C. Shi, E. Lu, K. Lin, and B. Wang, “One2multi
graph autoencoder for multi-view graph clustering,” in WWW,
2020, pp. 3070–3076.

[19] Q. Liu, M. C. Kampffmeyer, R. Jenssen, and A.-B. Salberg, “Multi-
view self-constructing graph convolutional networks with adap-
tive class weighting loss for semantic segmentation,” in CVPR
Workshops. IEEE, 2020, pp. 199–205.

[20] J. Sun, J. Zhang, Q. Li, X. Yi, Y. Liang, and Y. Zheng, “Predicting
citywide crowd flows in irregular regions using multi-view graph
convolutional networks,” IEEE TKDE, no. 01, pp. 1–1, 2020.

[21] C. Jia, B. Wu, and X.-P. Zhang, “Dynamic spatiotemporal graph
neural network with tensor network,” arXiv, 2020.

[22] Z. Liu, Y. Dou, P. S. Yu, Y. Deng, and H. Peng, “Alleviating the
inconsistency problem of applying graph neural network to fraud
detection,” in SIGIR. ACM, 2020, pp. 1569–1572.

[23] Y. Hou, J. Zhang, J. Cheng, K. Ma, R. T. B. Ma, H. Chen, and M.-C.
Yang, “Measuring and improving the use of graph information in
graph neural networks,” in ICLR, 2019.

[24] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks
from the topological view,” in AAAI. AAAI Press, 2020, pp. 3438–
3445.

[25] H. Chen, Y. Xu, F. Huang, Z. Deng, W. Huang, S. Wang, P. He,
and Z. Li, “Label-aware graph convolutional networks,” in CIKM.
ACM, 2020, pp. 1977–1980.

[26] H. Peng, R. Zhang, Y. Dou, R. Yang, J. Zhang, and P. S. Yu,
“Reinforced neighborhood selection guided multi-relational graph
neural networks,” TOIS, 2021.

[27] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing
graph neural network-based fraud detectors against camouflaged
fraudsters,” in CIKM. ACM, 2020, pp. 315–324.

[28] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath ag-
gregated graph neural network for heterogeneous graph embed-
ding,” in WWW, 2020, pp. 2331–2341.

[29] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in WWW. ACM, 2019,
pp. 2022–2032.

[30] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-
tions,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[31] X. Liu, X. You, X. Zhang, J. Wu, and P. Lv, “Tensor graph convo-
lutional networks for text classification,” in AAAI. AAAI Press,
2020, pp. 8409–8416.

[32] V. N. Ioannidis, A. G. Marques, and G. B. Giannakis, “Tensor graph
convolutional networks for multi-relational and robust learning,”
IEEE Transactions on Signal Processing, vol. 68, pp. 6535–6546, 2020.

[33] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM journal on Matrix Analysis
and Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[34] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and
empirical evaluation,” in ECML, vol. 3720. Springer, 2005, pp.
437–448.

[35] Y. Cao, Z. Liu, C. Li, Z. Liu, J. Li, and T.-S. Chua, “Multi-channel
graph neural network for entity alignment,” in ACL. Association
for Computational Linguistics, 2019, pp. 1452–1461.

[36] H. A. L. Kiers, “Towards a standardized notation and terminology
in multiway analysis,” Journal of Chemometrics, vol. 14, no. 3, pp.
105–122, 2000.

[37] S. F. Yilmaz and S. S. Kozat, “Unsupervised anomaly detection via
deep metric learning with end-to-end optimization,” arXiv, 2020.

[38] A. B. Ragin, H. Du, R. Ochs, Y. Wu, C. L. Sammet, A. Shoukry, and
L. G. Epstein, “Structural brain alterations can be detected early in
hiv infection,” Neurology, vol. 79, no. 24, pp. 2328–2334, 2012.

[39] C. Yan and Y. Zang, “Dparsf: A matlab toolbox for ”pipeline”
data analysis of resting-state fmri,” Frontiers in systems neuroscience,
vol. 4, p. 13, 2010.

[40] S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E.
Behrens, H. Johansen-Berg, P. R. Bannister, M. De Luca, I. Drobn-

14

jak, D. E. Flitney et al., “Advances in functional and structural mr
image analysis and implementation as fsl,” Neuroimage, vol. 23,
pp. S208–S219, 2004.

[41] B. Cao, L. Zhan, X. Kong, P. S. Yu, N. Vizueta, L. L. Altshuler, and
A. D. Leow, “Identification of discriminative subgraph patterns in
fmri brain networks in bipolar affective disorder,” in International
Conference on Brain Informatics and Health. Springer, 2015, pp. 105–
114.

[42] S. Whitfield-Gabrieli and A. Nieto-Castanon, “Conn: A functional
connectivity toolbox for correlated and anticorrelated brain net-
works,” Brain connectivity, vol. 2, no. 3, pp. 125–141, 2012.

[43] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. V. N. Vishwanathan,
A. J. Smola, and H.-P. Kriegel, “Protein function prediction via
graph kernels,” Bioinformatics, vol. 21, pp. i47–i56, 2005.

[44] N. Adaloglou, N. Vretos, and P. Daras, “Multi-view adaptive
graph convolutions for graph classification,” in ECCV. Springer,
2020, pp. 398–414.

[45] J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han, “Graph-based consen-
sus maximization among multiple supervised and unsupervised
models,” NIPS, vol. 22, pp. 585–593, 2009.

[46] A. Kumar, P. Rai, and H. Daume, “Co-regularized multi-view
spectral clustering,” NIPS, vol. 24, pp. 1413–1421, 2011.

[47] J. Liu, C. Wang, J. Gao, and J. Han, “Multi-view clustering via
joint nonnegative matrix factorization,” in SDM. SIAM, 2013, pp.
252–260.

[48] R. Xia, Y. Pan, L. Du, and J. Yin, “Robust multi-view spectral
clustering via low-rank and sparse decomposition,” in AAAI.
AAAI Press, 2014, pp. 2149–2155.

[49] F. Nie, J. Li, X. Li et al., “Parameter-free auto-weighted multiple
graph learning: a framework for multiview clustering and semi-
supervised classification,” in IJCAI, 2016, pp. 1881–1887.

[50] L. Shu and L. J. Latecki, “Integration of single-view graphs with
diffusion of tensor product graphs for multi-view spectral cluster-
ing,” in ACML, vol. 45, 2015, pp. 362–377.

[51] T. Zhang, W. Zheng, Z. Cui, and Y. Li, “Tensor graph convolutional
neural network,” arXiv, 2018.

Xusheng Zhao is currently a Ph.D. candidate in
the Institute of Information Engineering, Chinese
Academy of Sciences and the School of Cyber
Security, University of Chinese Academy of Sci-
ences. His research interests include represen-
tation learning and reinforcement learning.

Qiong Dai is currently an Associate Professor in
the Institute of Information Engineering, Chinese
Academy of Sciences. Her current research in-
terests include data mining, knowledge graph
and collaborative computing.

Jia Wu received the Ph.D. degree in computer
science from the University of Technology Syd-
ney, Australia. Dr Wu is currently the Research
Director for the AI-enabled Processes (AIP) Re-
search Centre and an ARC DECRA Fellow in
the School of Computing, Macquarie University,
Sydney, Australia. His current research interests
include data mining and machine learning. Since
2009, he has published 100+ refereed journal
and conference papers, including TPAMI, TKDE,
TNNLS, TMM, TKDD, NIPS, WWW, and KDD.

Dr. Wu was the recipient of SDM’18 Best Paper Award in Data Science
Track, IJCNN’17 Best Student Paper Award, and ICDM’14 Best Paper
Candidate Award. He is the Associate Editor of the ACM Transactions
on Knowledge Discovery from Data (TKDD) and Neural Networks (NN).

Hao Peng is currently an Assistant Professor
at the School of Cyber Science and Technol-
ogy, Beihang University. His research interests
include representation learning, social network
mining and reinforcement learning. To date, Dr
Peng has published over 70 research papers in
top-tier journals and conferences, including the
IEEE TKDE, TPDS, TC, ACM TOIS, TKDD, and
Web Conference.

Mingsheng Liu is a Professor in Shijiazhuang
Institute of Railway Technology, Shijiazhuang,
China. His research interests include urban com-
puting, big data and deep learning.

Xu Bai is an Engineering in the Institute of
Information Engineering, Chinese Academy of
Sciences. His current research interest include
network security and social computing.

Jianlong Tan is a Professor in the Institute of
Information Engineering, Chinese Academy of
Sciences. His main research directions are net-
work data flow management, algorithm design,
massive regular expression matching and image
matching algorithms.

Senzhang Wang is a Professor in the School
of Computer Science and Engineering, Central
South University. His current research interests
include data mining, urban computing and social
network analysis.

Philip S. Yu is a Distinguished Professor and the
Wexler Chair in Information Technology at the
Department of Computer Science, University of
Illinois at Chicago. Before joining UIC, he was at
the IBM Watson Research Center, where he built
a world-renowned data mining and database de-
partment. He is a Fellow of the ACM and IEEE.
Dr. Yu has published more than 1,100 referred
conference and journal papers cited more than
142,000 times with an H-index of 175. He has
applied for more than 300 patents. Dr. Yu was

the Editor-in-Chiefs of ACM Transactions on Knowledge Discovery from
Data (2011-2017) and IEEE Transactions on Knowledge and Data En-
gineering (2001-2004).

	Introduction
	Preliminaries
	Methodology
	Bridge Module for PCI Extraction
	RL-guided Module for Neighbor Filtration
	Neighbor importance Measure
	Filtering Threshold Calculator

	Feature Aggregation
	Intra-graph Aggregation
	Inter-graph Aggregation

	Optimization

	Experiments
	Datasets and Processing
	Baselines and Metrics
	Implementation Details
	Classification Results (RQ1)
	Clustering Results (RQ2)
	Ablation Studies (RQ3)
	Hyperparameter Analysis (RQ4)
	Discussion (RQ5)

	Related Work
	Tensor-based Multi-view Graph Representation
	Tensor Graph Neural Networks
	GNN Models with Neighbor Selection

	Conclusion
	References
	Biographies
	Xusheng Zhao
	Qiong Dai
	Jia Wu
	Hao Peng
	Mingsheng Liu
	Xu Bai
	Jianlong Tan
	Senzhang Wang
	Philip S. Yu

